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Pathogenesis of aplastic anemia
Li Wang and Hong Liu

Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China

ABSTRACT
Aplastic anemia (AA) is a rare and life-threatening bone marrow failure (BMF) that results in
peripheral blood cytopenia and reduced bone marrow hematopoietic cell proliferation. The
symptoms are similar to myelofibrosis, myelodysplastic syndromes (MDS) and acute myeloid
leukemia (AML) making diagnosis of AA complicated. The pathogenesis of AA is complex
and its mechanism needs to be deciphered on an individualized basis. This review
summarizes several contributions made in trying to understand AA pathogenesis in recent
years which may be helpful for the development of personalized therapies for AA.
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1. Introduction

Aplastic anemia (AA) is a rare, life-threatening and het-
erogeneous disorder of the blood. It results in peripheral
cytopenia with trilineage bone marrow (BM) aplasia.
Anemia, bleeding, infection and several other clinical
symptoms are usually the first presentations of AA. It
may occur at any age, however young individuals (age
10–25 years) and the elderly (>60 years) are the most
prone. No significant differences in gender have been
noted [1]. AA incidence in the United States and
Europe is below 2.5/million, while the incidence of AA
in Asia is 2–3 times higher [2,3]. However, the incidence
rates of AA in Asia differ among the various countries,
with rates of 7.4/million in China, 3.7–5.0/million in Thai-
land, and 4.8/million in Malaysia. Environmental factors,
such as drugs, toxins and chemicals may influence the
incidence of AA [4].

AA can be divided into congenital and acquired. The
inherited form is rare and mainly include Fanconi
Anemia (FA), Congenital Keratosis (DKC), Congenital
Pure Red Cell Aplasia(DBA) and Shwachman-Diamond
Syndrome(SDS). Hematopoietic stem cell transplan-
tation (HSCT) and anti-thymocyte globulin (ATG)-
based immunosuppressive therapy (IST) have been
the major treatment strategies for AA. However, the
mechanism of AA is very complicated and has a high
relapse rate with the secondary clonal disease. We
reviewed the progress made in understanding the
pathogenesis of AA in recent years so as to guide
more effective clinical treatment strategies (Table 1).

2. Deficiencies in hematopoietic stem and
progenitor cells (HSPCs)

Hematopoietic stem cells (HSCs) have the ability to self-
renew and are pluripotent to differentiate into several

hematopoietic lineages. They play an important role
in the maintenance and regeneration of the hemato-
poietic system [5]. Activated HSCs are responsible for
the routine maintenance of hematopoiesis and tissue
homeostasis. Quiescent subsets that form a stem cell
reservoir could be activated after tissue damage to
restore the normal stem cell pool and hematopoietic
function [6]. Accumulation of DNA damage in HSPCs
during their lifespan is a factor responsible for the
aging and degeneration of the hematopoietic system
and may contribute to transformation and cancer
development [7]. It is hypothesized that AA is charac-
terized by a loss or dysfunction of HSPCs. It involves
both the quantitative loss of stem cell numbers and
the qualitative abnormalities in stem cell function
[8,9]. This was demonstrated by Maciejewski et.al
where they showed a decrease in number and function
of HSPCs using long-term culture initiating cell (LTC-IC)
assays [8]. External factors such as viruses, radiation and
chemotherapeutic drugs affect HSC homeostasis,
differentiation and self-renewal, making individuals
vulnerable to AA [10]. The three lineages that are
derived from hematopoietic cells are significantly
reduced in AA patients, while non-hematopoietic cells
and adipocytes increase in proliferation. In addition,
increased apoptosis of bone marrow progenitor cells
(lin-c-kit+sca-1+CD34+) was observed in AA patients
and maybe due to stem cell deficiencies [11]. Macie-
jewski et.al showed that functional expression of Fas
antigen on CD34+ cells was increased in AA patients
compared to healthy individuals [12]. It has been
demonstrated that Fas-mediated apoptosis of CD34+

progenitor cells leads to HSC depletion [13,14]. Fas
binds to FasL and is a member of the tumor necrosis
factor receptor/neural growth factor receptor super-
family. Under physiological conditions, Fas is expressed
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on several cell surfaces, including activated T cells, B
cells, monocytes and granulocytes to regulate prolifer-
ation and/or clearance [12]. Timeus F et al. demon-
strated that CD34+ cells in the peripheral blood of AA
patients were lower and had higher rates of apoptosis
compared to healthy individuals [15]. Z.H.Shao et.al
using flow cytometry examined 15 newly diagnosed
SAA patients (9 males and 6 females). They found an
increased level of apoptosis in bone marrow hemato-
poietic cells in SAA patients and concluded apoptosis
was induced by the recognition of Fas expression
antigen by FasL expressing cytotoxic T lymphocytes
(CTL) [12]. The above data suggests the involvement
of Fas/FasL in the apoptosis of HSC and demonstrates
a possible mechanism for dysfunction of bone
marrow hematopoietic cells in SAA patients.

3. Abnormal bone marrow
microenvironment

Another pathogenetic mechanism for AA may involve
abnormal bone marrow microenvironment. Endosteal,
vascular and perivascular cells make up the bone
marrow microenvironment and play a significant
role together with HSCs in hematopoiesis [16]. Endo-
steum niche cells provide a quiescent HSC microenvir-
onment by secreting regulatory molecules and
cytokines [17–19], while the vascular niche regulates
the proliferation, differentiation and mobilization of
HSCs [20]. Liangliang Wu et.al analyzed the cellular
components of the bone marrow microenvironment
using in situ immunohistochemical staining. They
found that AA patients had fewer endosteal, vascular
and perivascular cells compared to healthy controls.
This suggested AA was associated with impaired
niches [21]. In fact, little was known regarding niche
cells until recently. Niche cells make up a small

subset of non-hematopoietic bone progenitor cells
called mesenchymal stem cells (MSCs). MSCs can
differentiate into osteoblasts, chondrocytes and adi-
pocytes [22], and secrete a number of cytokines and
growth factors that affect hematopoietic function
through direct and paracrine mechanisms [23]. MSCs
in the bone marrow secrete interleukin (IL)-6, IL-11,
IL-12 and flt-3 ligands, which affect the proliferation,
differentiation and self-renewal of HSCs. They also
secrete chemokine (CXCL)-12 which regulates the
adhesion, expansion, migration and homing of HSCs,
which in turn secrete several soluble mediators such
as intercellular adhesion molecule-1 (ICAM-1) that
interacts with T cells to regulate the immune
response [24,25]. Compared to MSCs from healthy
individuals, BM-MSCs from AA patients had reduced
proliferation and were deficient in immune suppres-
sion of mixed lymphocyte reaction (MLR) and IFN-γ
release. BM-MSCs from AA patients had the tendency
to differentiate into adipocytes and had reduced
expression of osteonectin [26]. Unlike osteoblasts, adi-
pocytes affect the proliferation and renewal of HSC
[27], resulting in bone marrow failure and hemato-
poietic cell loss. In view of the inhibitory effect of
MSCs on the proliferation and cytotoxicity of
immune cells, several clinical studies have demon-
strated that co-transplantation of MSCs with allo-
geneic HSCs had tremendous improvement in
hematopoietic function in AA patients (information
on these studies were gathered from the National
Institutes of Health (NIH) clinical trial database)
[25,28]. However previous though was that the MSC
phenotype and differentiation in the bone marrow
of AA patients were normal and had immunomodula-
tory function [29]. The hematopoietic microenviron-
ment is complex and needs to be further
investigated to understand the pathogenesis of AA.

Table 1. Summary of aplastic anemia pathogenesis.
Hematopoietic stem/
progenitor cell

(1) High expression of Fas antigen
(2) DNA damage resulting from viruses、radiation and chemotherapeutic drugs

Bone marrow
microenvironment

Affects the proliferation, differentiation and self-
renewal of HSCs

(1) Reduced secretion of IL-6, IL-11, IL-12 and flt-3 ligands
(2) Lower numbers of endosteal, vascular and perivascular cells

Regulates the adhesion, expansion, migration and
homing of HSCs

Dysfunction in CXCL-12 secretion

Has the tendency to differentiate into adipocytes and
affects the proliferation and renewal of HSC

Reduced expression of osteonectin

Deficiencies in immune suppression of mixed lymphocyte reaction (MLR) and IFN-γ release
Immune function Dendritic cells High expression of co-stimulatory molecules (CD80/b7-1, CD86/b7-2,

CD40, etc.) on the surface reduces immune tolerance
Natural killer cells Decreased proportion of NK cells results in poor immune surveillance
T lymphocytes and their secreted cytokines Increased secretion of IFN-γ and TNF-α

induces apoptosis
Clonal amplification of
CD8+ cytotoxic T cells

Increased secretion of negative
regulators

Different subsets of CD4+T
cells

Increased levels of IL-2, IL-6 and IL-10,
and reduced levels of IL-3 and IL-11

Other regulators

Genetic background Genetic susceptibility Higher frequency of DRB1 * 15, DQB1 * 06 and HLA-B*40:02
CD8 of cytotoxic T lymphocytes bind to the α-3 domain of HLA class I

Clonal hematopoiesis and somatic mutations Mutations in BCOR and BCORL1 (in 9.3% of patients), PIGA (in 7.5%),
DNMT3A (in 8.4%), and ASXL1(in 6.2%).

Telomeres Reduced telomere length

560 L. WANG AND H. LIU



4. Immune dysfunction

Recent clinical studies have suggested that AA is an
autoimmune and bone marrow destructive disease
that is mediated by abnormally activated T lympho-
cytes and their secreted lymphokines (Figure 1). Neal
s. Young et al. successfully constructed an immune-
mediated bone marrow failure model by infusing 4–
10 × 106 allogeneic lymph node (LN) cells into C57BL/
6 (B6) mice that had undergone total-body irradiation
(TBI) with 6.5 G [30]. These mice had significantly
fewer blood cells and severe bone marrow dysplasia
compared to non-infused mice. The administration of
immunosuppressants against human thymoglobulin
(ATG) and cyclosporine (CSA) had a beneficial response
rate of approximately 60–70%, with overall survival
rates of 60–90% [31–33]. This suggests that AA patho-
genesis was associated with immune-mediated hema-
topoietic depletion. However, approximately 30–40%
of AA patients after IST will relapse, suggesting that
IST is not a cure.

4.1. Dendritic cells (DCs)

DCs are antigen presenting cells (APC) and were dis-
covered by the Canadian scholar, Steinman in 1973.
DC regulates and maintains the immune response.
There are two types of DCs, myeloid dendritic cells
(MDCs) that are derived from myeloid stem cells via
GM-CSF stimulation, and are termed DC1. The other
type is the lymphoid dendritic cells(LDCs) or plasmacy-
toid dendritic cells (PDCs) that are derived from lym-
phoid stem cells and are termed DC2. The majority of
DCs in the human body are in an immature state but
have a strong ability to phagocyte antigens, while

mature DCs express high levels of co-stimulators and
adhesion factors. Studies have demonstrated that the
co-stimulatory molecules (CD80/b7-1, CD86/b7-2,
CD40) on the surface of DC in severe AA patients are
higher compared to healthy individuals. The highly
expressed co-stimulatory molecules provide the
second signal for T cell activation, initiation of the
immune response, and reduce immune tolerance [34].

4.2 . Natural killer cells (NK cells)

NK cells are vital immune cells in the body. Through
innate and antibody-dependent cell-mediated cytotox-
icity (ADCC), NK cells play an important role in antiviral
infection and immune surveillance. The proportion of
NK cells in severe AA patients were found to be
reduced significantly, while immunosuppressive
therapy restored NK cell numbers [35].

4.3. T lymphocytes and their secreted cytokines

Immune disorders induced by AA are mainly due to the
cellular hyperimmune state. T lymphocytes are the
main effector cells in the immune system. Abnormal
T cell subsets and changes in the levels of negative
regulatory factors play an important role in the occur-
rence and development of AA.

It has been demonstrated that the number of CD8+

cytotoxic T cells in the bone marrow and the peripheral
blood of AA patients is higher [36,37]. Due to T cell
receptor (TCR) restriction, the clonal amplification of
autoimmune CD8+ cytotoxic T cells results in increased
secretion of pro-inflammatory factors, including inter-
feron-gamma(IFN-γ) and tumor necrosis factor α(TNF-
α). This in turn synergistically induces apoptosis of
CD34+ cells via Fas/FasL interaction [38–41]. In addition
to CD8+ cytotoxic T cells, CD4+T cells play an important
role during AA. CD4+ T cells differentiate into Th1 cells,
leading to an increase in IFN-γ levels. CD4+ T cells also
differentiate into IL-4-producing CD4+ T cells (Th2
cells), IL-17-producing CD4+ T cells (Th17 cells) and
regulatory T cells(Tregs). Shahram Kordasti et.al exam-
ined 63 AA patients and demonstrated that the levels
of Th1 and Th2 cells in AA patients were higher com-
pared to healthy individuals. In addition, the number
of Tregs in patients with severe AA was lower com-
pared to healthy and non-severe AA patients, while
the number of Th17 cells was increased in patients
with severe AA. It was demonstrated that Th1 cells
were clonally restricted using spectra typing and
high-throughput deep sequencing, and hence may
be antigen-driven to damage Tregs. Different sub-
groups of Tregs have varying functions, for example,
CD4+CD25+CD45RA-Foxp3low cells secrete pro-inflam-
matory cytokines IL-17, IL-2 and IFN-γ, which have
inhibitory roles in AA [41].

Figure 1 . Immune-mediated mechanism related to AA patho-
genesis. AA is thought to be mediated by abnormally activated
T lymphocytes and their secreted lymphokines, which sub-
sequently result in HSC dysfunction and BM destruction. Over-
production of pro-inflammatory cytokines, including IFN-γ,
TNF-α and other regulators, inhibits the hematopoietic
system and leads to cell apoptosis through the Fas/FasL signal-
ing pathway. In addition, IFN-γ could induce PD-L1 expression
on T cells, NK cells and dendritic cells, which then binds to PD-1
to induce apoptosis and reduce immune tolerance. DC: dendri-
tic cell; HSC: hematopoietic stem cell; IFN-γ: interferon-γ; TNF-α:
tumor necrosis factor-α.
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IFN-γ and TNF-α levels in the bone marrow of AA
patients are significantly higher compared to healthy
individuals [42–44]. IFN-γ plays an important role in
both the innate and adaptive immunity and is a nega-
tive regulator of stem and precursor cell proliferation
and survival [45]. They are produced by activated T
cells in the bone marrow and have a profound
impact on the hematopoietic system. IFN-γ can
inhibit the production of several hematopoietic cell
types, such as B cells [46], red blood cells [47], eosino-
phils [48] and neutrophils [49]. In comparison to
healthy controls, the majority of AA patients had a T
to A single nucleotide polymorphism at position +874
of intron 1 in the IFN-γ gene, which leads to a high
expression of IFN-γ [50–52]. Sharpe AH et.al found
that IFN-γ could induce PD-L1 expression on T cells,
NK cells, macrophages, myeloid cells and epithelial
cells, which binds to PD-1 to induce apoptosis. Simul-
taneously, high expression of IFN-γ can induce the
expression of Fas in CD34+ cells in the bone marrow.
This results in the destruction of bone marrow HSCs,
as well as stimulates T cells to produce TNF-α and
RANKL. This in turn leads to bone marrow hematopoie-
tic failure. Furthermore, Howard A.Young et.al demon-
strated that IFN-γ functionally impaired and decreased
common myeloid progenitor cells (CMP), granulocyte
macrophage progenitor cells (GMP) and megakaryo-
cyte-erythroid progenitor cells (MEP) proliferation.
This in turn impacted hematopoiesis and resulted in
an ‘empty’ marrow. Surprisingly, several studies have
shown that AA patients could benefit from IST with
IFN-γ neutralization treatment, implying that IFN-γ
maybe a therapeutic target [53]. TNF-α plays a pivotal
role in the occurrence of inflammatory diseases such
as diabetes, septic shock and rheumatoid arthritis
[54]. It is a negative regulator of hematopoiesis. Neal
S Young et al. demonstrated that TNF-α – / – aplastic
anemia mice were resistant to bone marrow destruc-
tion induced by allogeneic LN cell infusion and
suggested that TNF-α was closely associated with
apoptosis in AA [55]. In addition, studies have demon-
strated that IFN-γ induces TNF-α production in mouse
macrophages through IFN regulatory factors, IFN-1
and IFN-8. This further implies the co-stimulation regu-
latory network between TNF-α and IFN-γ during the
bone marrow destruction process [56]. Negative regu-
lators, such as IL-2, IL-6 and IL-10 were also observed
to be significantly increased in SAA patients [57],
while hematopoietic positive regulators such as IL-3
and IL-11 were decreased [58,59].

5. Genetic background

Genetic factors play an important role in the pathogen-
esis of aplastic anemia, such as somatic cell mutations,
telomerase gene mutations and genetic susceptibility.

5.1. Genetic susceptibility

A number of studies have reported that several human
leukocyte antigen(HLA) alleles are associated with AA
[3]. HLA genes are located on chromosome 6p2.13
and encode the major histocompatibility complex pro-
teins in human. Numerous studies have suggested that
the specificity of HLA alleles makes the human body
susceptible to AA. Zaineb Akram et.al. examined the
HLA alleles of 74 AA patients using polymerase chain
reaction(PCR) and serological techniques and found
that compared to healthy individuals, DRB1*15(56.8%)
and DQB1*06(70.3%) frequency was higher in AA
patients. Based on multiple studies, DRB1*15,
DRB1*03, DQB1*0601 and DQB1*0603 were found to
be either susceptible or protective alleles. AA patients
with DRB *1501 were found to have a better response
to cyclosporine treatment [3,60]. CD8 of Cytotoxic T
lymphocytes binds to the α-3 domain of HLA class Ⅰ
to recognize auto-antigens that are present on HSC,
which then subsequently initiates bone marrow
failure [61]. Hiroyuki Maruyama et.al used high-sensi-
tivity flow cytometry to survey the presence of HLA-A
allele-lacking leukocytes in 144 AA patients. They
found that 18 of 71 (25.4%) newly diagnosed patients
and 25 of 73 (34.2%) previously treated AA patients
had HLA-A allele-lacking leukocytes. These strongly
suggest that HLA is involved in the pathogenesis of
AA [62]. González-Galarza FF et.al determined that
the frequency of HLA-B*40:02 was higher in Asian
healthy controls, i.e. 7.9% in Japanese, 2.0% in
Chinese, and 8.7% in South Koreans compared to
only 1.6% in Germans and 1.8% in Italians. This may
explain the higher incidence of AA in Asians compared
to Caucasians [63].

5.2. Clonal hematopoiesis and somatic
mutations

AA is more complex disease than expected for a simple
immune-mediated marrow failure. Complications
include paroxysmal nocturnal hemoglobinuria (PNH)
and MDS/AML and may not be initially diagnosed as
an immune-mediated disorder [64]. 60–75% AA
patients had hematopoietic recovery after IST,
however some AA patients would relapse due to the
reemergence of the original oligoclonal T cells, and
sometimes along with new clonal populations. Clonal
hematopoiesis is common in AA. High-throughput
sequencing has revealed the complexity of clonal
hematopoiesis in AA patients. PNH results from a
clonal expansion of cells derived from an HSC carrying
a somatic mutation in the PIGA gene [65]. 15–25% of
AA patients treated with IST had PNH. Tichelli A et.al
found that the incidence of MDS/AML after IST
increased by 5–15% after 5–11.3 years [66].
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Clonal hematopoiesis often manifests as somatic
mutations. About one third of AA patients had
mutations in candidate genes for MDS, AML, or both
as determined using targeted deep-sequencing, SNP
array karyotyping, or whole-exome sequencing. Yoshi-
zato T et al. investigated 156 patients with AA using tar-
geted sequencing and found that 36% of these
patients had multiple somatic mutations ranging
from 1 to 7 mutations. The majority of mutations
were BCOR and BCORL1 (in 9.3% of patients), PIGA (in
7.5%), DNMT3A (in 8.4%), and ASXL1 (in 6.2%) [67].
Patients with PIGA, BCOR and BCORL1 mutations had
a better response to IST, with improvements in pro-
gression free survival (PFS) and overall survival (OS).
This implied a protective mechanism from immune-
mediated destruction by pathogenic T cells [68,69].
However, patients with DNMT3A, ASXL1, JAK2/JAK3 or
RUNX1 mutations had a poor response to IST and
lower overall survival[70,71]. This suggests that moni-
toring clonal hematopoiesis and understanding the
different types of mutations using deep sequencing
and SNP array karyotyping are helpful to guide treat-
ment strategies for AA patients.

5.3. Telomeres

A common clinical manifestation of AA is the presence
of short telomeres in peripheral blood cells, especially
in neutrophils [1]. Both inherited and acquired AA are
associated with anomalous short telomeres. Telomeres
are specialized nucleoprotein structures located at the
termini of vertebrate chromosomes. They consist of
tandem repeat sequences (TTAGGG in vertebrates)
bound by a 6-protein complex (TRF1, TRF2, TIN2,
RAP1, TPP1, and POT1) known as shelterin [72]. Telo-
meres protect chromosome integrity, but their
lengths shorten with time. Telomerase can synthesize
DNA at the ends of chromosomes to extend telomere
lengths thus maintaining cell proliferation. However,
over a period of time, telomere length is reduced.
This subsequently results in reduced cell proliferation,
eventually leading to apoptosis. It has been observed
that telomere length in AA patients is reduced at a
much faster pace. This leads to decreased expression
levels of cell cycle checkpoint genes, such as CDK6,
CDK2, MYB and MYC. Telomerase enzyme activity is
decreased with simultaneous higher mutational fre-
quencies observed in telomerase reverse transcrip-
tase(TERT) [73,74]. Christian Bar et.al administered
adeno-associated virus (AAV) 9 gene therapy vectors
carrying the telomerase TERT gene to AA mouse
models that had short telomere length. They found
that telomerase activation reversed AA and improved
survival [1]. These findings indicated that telomerase
activation could be a novel therapeutic strategy to
treat AA associated with short telomere length.
Hence determining telomerase activity and telomere

length will be helpful for the clinical diagnosis and
treatment of AA [75].

6. Conclusion

AA is a bone marrow dysplasia disease induced by
hematopoietic progenitor cell damage. Severe AA is
defined as bone marrow cellularity of less than 25%,
or 25–50% with less than 30% residual hematopoietic
cells, and at least two of the following: (1) neutrophil
count <0.5 × 109/L, (2) platelet count <20 × 109/L, or
(3) reticulocyte count <20 × 109/L [33]. Once AA is diag-
nosed, the severity of the disease should be deter-
mined and treated as soon as possible. HSCT and IST
are the first-line treatment strategies for SAA patients.
However the high cost of treatment, the lack of HCST
donors and the recurrence rate after IST have led to
an unsatisfactory treatment outcome.

Additional studies using epidemiology, basic and
clinical research to carefully analyze the etiology and
clinical pathology of AA are required. In addition, indi-
vidualized treatment strategies to appropriately treat
patients with AA are required to improve their progno-
sis, while simultaneously paying attention to the
patients’ quality of life. Standardized clinical manage-
ment and nursing programs could have a beneficial
effect on patients lives.
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